BEA WebLogic Security Framework:
Working with Your Security Eco-System

BEA White Paper

..."'

[4 F
4) ©
L4 ea

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.
March 28, 2003

Restricted Rights Legend

This document may not, in whole or in part, be photocopied, reproduced, translated, or reduced to any
electronic medium or machine readable form without prior consent, in writing, from BEA Systems, Inc.
Information in this document is subject to change without notice and does not represent a commitment on the
part of BEA Systems, Inc.

Trademarks

BEA, Tuxedo, and WebLogic are registered trademarks and BEA WebLogic Enterprise Platform, BEA WebLogic
Server, BEA WebLogic Integration, BEA WebLogic Portal, BEA WebLogic Platform, BEA WebLogic Express,
BEA WebLogic Workshop, BEA WebLogic Java Adapter for Mainframe, and BEA eLink are trademarks of

BEA Systems, Inc. All other company and product names may be the subject of intellectual property rights
reserved by third parties.

CWP0528E0303-1A

BEA Systems, Inc.

2315 North First Street
SanJose, CA 95131 U.S.A.
Telephone: +1.408.570.8000
Facsimile: +1.408.570.8901
www.bea.com

ii BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System

Contents

INErOdUCEION 1
The Integrated SECUTIEY ... e 2
ReqUirements 2
Authentication ... 3
AUthOTIZation 4
AUIEING ... b
) (1) (PP 6
Security Framework Architecture.................... 6
OVETVIBW e e 6
Service Provider Integration ... 7
Backwards Compatibilityoo 9
Security Integration SCENATIOSot 9
Perimeter Authentication.................... 9
Role ASSOCIATIONS oo 10
Credential MApPINGo 12
Parametric Authorization ... 12
Securing Web ServICeSo 14
CONCIUSION ...t 15
ADOUE BEA . 15

BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System iii

Introduction

We have an application security crisis on our hands. N-tier architectures, enterprise application integra-
tion, and Web Services are making the application layer more complex and fragmented. As a result, we have
difficultly administering security policies and bridging diverse security models. With greater opportunities
to make mistakes and miss weaknesses, the chance of accidental disclosure and the vulnerability to active
attack go up.

Most enterprises have adopted one of two tactics to temporarily avert this crisis. One tactic puts the
responsibility on application developers. They have to discover the security postures of upstream providers
and downstream requesters. Then they have to determine appropriate policies for the application layer and
put security code along side business code. This tactic typically results in a confusing morass of security
and business logic that is not only difficult to maintain but prone to error.

Another tactic puts responsibility on security administrators. They have to understand the detailed security
operations of middleware infrastructure like the J2EE. Then they have to figure out how to statically
configure application components to minimize their conflicts with other system elements. This tactic
typically results in overwhelmed security administrators and very conservatively configured components.
Everyone would be happier if we could cleanly separate security from application development.

The fundamental sources of these problems are twofold. First, middleware paradigms assume that the
application is the center of the world. They often don’t fully acknowledge the rest of the enterprise security
ecology, which includes firewalls, directory servers, Web servers, authentication providers, and databases.
Second, the built-in security models of most middleware paradigms don’t fully support the dynamic
policies necessary to meet the realities of modern business processes. Evaluating who owns an account or

the strength of encryption used on a connection is cumbersome if not impossible.

The solution lies in a change of perspective—middleware paradigms own the business logic but
cooperate on security. Therefore, they should gather as much information from the rest of the
security ecology as possible and enable to security administrators to evaluate this information before
it ever reaches the business logic. The BEA WebLogic Server 8.1 Security Framework adopts this
collaborative perspective.

BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System 1

The Integrated Security

BEA WebLogic Server 8.1 offers an integrated approach to solve the overall security problem for enterprise
applications. This approach is unique in the industry: no other application server vendor, open-source
product, or dedicated security solution goes to such length to provide a powerful, flexible, and extensible
security architecture. With this framework, application security is never an afterthought: it becomes a
function of application infrastructure and is separate from the application itself. With it any application
deployed on BEA WebLogic Server can be secured either through the security features included with the
server out-of-the-box, or by extending the open Security Service Provider Interface to a custom security
solution, or by plugging in other specialized security solutions from major security vendors that customer’s
enterprise standardizes on.

The subsequent sections of this paper define the major requirements for an integrated application security
solution, and explain how BEA WebLogic Security Framework delivers them to customer’s application.

Requirements

The goal of application security is rather simple: (1) enforce business policies concerning which people
should have access to which resources and (2) don’t let attackers access any information at all. Goal (1)
causes a problem because it seems acceptable to enforce business policies in business logic. This belief is
misplaced because it’s much harder to change policies when enforcement occurs in business logic.
Consider the analogy to a secure physical filing system. You don’t take a document and rewrite it when a
security policy changes. You put it in a different filing cabinet. Different filing cabinets have different keys
and a security officer controls the distribution of keys. Similarly, application developers should not have to
change business logic when security policy changes. A security administrator should simply alter the
protection given to affected components.

Moreover, mixing security code with business logic compromises both goals (1) and (2) if developers make
mistakes. When the security code in a component has a defect, people may accidentally access information
they shouldn’t and attackers may exploit the defect to gain unauthorized access. Of course, mistakes are
unavoidable. That's why we test software. But it’s a lot harder to test the security of every application
component individually than a security system as a whole. The difference is somewhat analogous to
reading every document in our hypothetical filing system for its fidelity to security policies rather than
simply testing the integrity of the locked filing cabinets. However, we shouldn’t blame application develop-
ers for mixing security code and business logic. We should blame middleware security models. Most of
them simply do not support the types of policies many enterprises have such as only an account holder can
access his account. Unless these security models begin supporting a much more dynamic type of security,
developers really have no choice.

2 BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System

Middleware security models also fail enterprises in goal (2). Keeping attackers out requires a united front
from all the elements in a distributed system. Cooperation is the key to this united front. Middleware sits
between front-end processors and back-end databases. The middleware security system must be prepared
to accept as much information as it can from the front-end processors about the security context of their
requests and must be prepared to offer as much information as it can to back-end databases about the
context of its requests. Moreover, it must be prepared to cooperate with special security services that work
to coordinate the efforts of all these tiers. Middleware security models offer little, if anything, to support
such cooperation. This failing affects many aspects of application security.

As Web Services become the prevailing model for enterprise integration and the preferred way to build
interoperable applications issues concerning security become imperative. Transport-level security focuses
on providing privacy to communication, but does not address the propagation of identity or control of
access to the Web Service.

Authentication

Authentication is the first line of defense. Knowing the identity of requesters enables the application layer
to decide whether to grant their requests and poses a barrier to attackers. Fundamentally, all authentica-
tion schemes work the same way. They offer a credential to establish identity and provide a means to verify
that credential. However, there is a wide variation in the form of credentials and verification mechanisms.
Each enterprise’s choices of authentication schemes depend on a number of factors, including the
sensitivity of protected resources, expected modes of attack, and solution lifecycle cost. In most cases,
enterprises already have one or more authentication schemes in place so middleware must work with these
schemes by accepting their credentials and engaging their verification mechanisms. Without this coopera-
tion, the enterprise will have to use a lowest common denominator scheme like passwords, potentially
limiting the use of such middleware to low value applications.

The problem of Web single sign-on (SS0) is even more difficult. The motivation for SSO stems from the
distributed nature of Web applications. From the user perspective, a single application may actually
encompass a number of different software components, running on a number of different servers, and even
operated by a number of different organizations. Users don’t want to have to resubmit credentials every
time they click a link that happens to take them to a page running in a different location. Their experiences
should be seamless. The previous problem of working with existing authentication schemes requires only
understanding credential formats and integrating with verification mechanisms. However, with Web SSO,
users don’t even want to provide credentials in many circumstances. The trick of establishing a user’s
identity without seeing his credentials requires sophisticated behind-the-scenes communication between
the two servers involved in handing off a user session. There are a number of proprietary solutions and
some emerging standards for this communication, but it is likely that a given application may have to
support multiple approaches for the foreseeable future so an open model is necessary.

BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System 3

Working with other Web application components involves cooperation on the front-end, but middleware
infrastructure must also cooperate on the back-end. Databases have been around a long time and enter-
prises take database security very carefully. They really don’t trust the front-end and middleware layers. If
an attacker were to compromise either one of these layers, he could potentially issue a sequence of
database requests that would return a large fraction of all the data it maintains. Also, if the front-end or
middleware components have defects, they could unintentionally request data for the wrong user, resulting
in the potentially embarrassing disclosure of private information. Therefore, many enterprises want to bind
each database request to a particular end-user, including the appropriate credentials that establish the
user’s identity. Applications must be prepared to propagate this information.

Authorization

Once an application has established the requester’s identity, it must decide whether the set of existing
security policies allows it to grant the request. Typically, middleware infrastructure such as the J2EE uses
a static role-based system. During user provisioning, security administrators explicitly assign roles to users
and then update these assignments as conditions require. During component deployment, security
administrators indicate the roles allowed to access the component. At runtime, if a request comes from a
user with the necessary roles, the application grants the request. This static approach ignores the dynamic
nature of many business policies. Consider the examples of policies governing bank accounts, expense
reports, and bank tellers. For bank accounts, each customer should only be able to access his own
accounts. For expense reports, a manager can provide an approval only up to a set amount and never for
his own expenses. For bank tellers, they only fulfill the teller role when they’re on duty. There are policies
that are even more sophisticated where authorization depends on the combination of roles assigned to a
user, as well as the content of the request. Middleware infrastructure must explicitly support these kinds of
dynamic policies or at least provide enough context to specialized security services that do.

The need for dynamic authorization raises the issue of administration. We definitely don’t want to force
security administrators to become experts in programming languages like Java. Certainly there will be
unusual situations that require some custom programming, but routinely updating the dollar threshold for
expense report authorization shouldn’t require it. At a more mundane level, we don’t want to force them to
dig through XML formatted deployment descriptors and then redeploy components to update role assign-
ments. Security administrators need a well-designed, graphical user interface that lets them perform all of
their routine tasks and most of their non-routine ones at runtime. Managing user lists and their assigned
roles, changing the level of protection for components, and configuring dynamic constraints should all

require just a few moments.

A more complicated headache for security administrators comes when migrating from one authorization
service to another. Due to the complexity of authorization decisions, many enterprises rely on specialized
services and all applications delegate such decisions to them. When it comes time to perform a major
version upgrade or switch to a different service, administrators face a quandary. When do they switch over

4 BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System

to the new provider? The concern lies with defects or configuration problems in the new service. They
don’t want to switch over only to experience a massive case of improper authorizations or mistaken
rejections. What they’d really like is to use both systems simultaneously and note when the old service and
new service differ in their decisions, but this approach requires an even greater ability for the middleware
infrastructure to cooperate with the rest of the security ecology.

Auditing

If an application could simultaneously use two different authorization services, a difference of opinion
would be a very noteworthy event and administrators would want to know about it. Unfortunately, most
middleware infrastructure neglects this type of security auditing. Proper auditing is not simply a matter of
writing information to disk somewhere. To support their duties to verify, detect, and investigate, adminis-
trators need records of all security events in a single location, active notification of certain especially
important events, and the ability to quickly search the records.

Security administrators are responsible for ensuring the enforcement of the enterprise policies regarding
information access. Obviously, they must first specify these policies, hopefully using a productive interface
as described above. Then they must verify the actual enforcement of these policies by periodically inspect-
ing the audit trail. Government regulations or commercial contracts may require such audits. Administra-
tors sample a representative set of transactions and track their paths through various application
components to ensure the correct enforcement of security policies at each step. They need a consolidated
audit trail or they’ll have to spend a significant effort manually assembling logs from different locations.
They need detailed records or they won’t be able to determine full compliance.

Responding to potential breaches is the other primary responsibility of security administrators. Responses
involve two steps, detection and investigation. First, they need the ability to specify conditions under which
the security system will actively notify them. These conditions could involve transaction values, such as
transfers over a million dollars, or a pattern of events, such as a spike in the number of clients connecting
using weak encryption when accessing sensitive functions. Once they receive notification, administrators
must be able to quickly search the logs to determine if there has been an actual breach and the extent of
any damage. These searches may involve complex criteria and must execute against the live audit trail so
they can track a particular attack as it unfolds. These requirements make the auditing subsystem a
substantial piece of software in its own right that middleware providers must devote a substantial effort to
perfecting it.

BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System 5

Vision

Obviously, there are many specific challenges in application security. But like the essence of application
security itself, the essence of the solution is also rather simple.

1. We should have a clean, elegant abstraction between security policy and business logic.
2. We should have a simple, declarative interface for managing security policies in real time.

3. We should have an open, flexible architecture for integrating with security services.

These practices avoid the problem of mixing security and business logic, streamline security administra-
tion, and enable cooperation with the rest of the security ecology. The BEA WebLogic Security Framework
delivers these critical capabilities.

Security Framework Architecture

Overview

The goal of the BEA WebLogic Security Framework is to deliver an approach to application security that is
comprehensive, flexible, and open. Unlike the security realms available in earlier versions of BEA WebLogic
Server, the new framework applies to all J2EE objects, including JSPs, servlets, EJBs, JCA Adapters,

JDBC connection pools, and JMS destinations. In addition, the new framework is also used to provide
authentication and authorization services required for the development of secure Web Services. It
complies with all the J2EE 1.3 security requirements such as JAAS for objects related to authentication
and authorization, JSSE for communication using SSL and TLS, and the SecurityManager class for code-
level security.

The heart of the architecture is the separation of security and business logic. Business logic executes in an
appropriate container, be it for a JSP, servlet, or EJB. When the container receives a request targeted at an
object it contains, it delegates the complete request and its entire context to the Security Framework. The
framework returns a yes or no decision on whether to grant the request. This approach takes business
logic out of the security equation by providing the same information to the security system that is available
to the target object. They each use this information to fulfill their dedicated responsibility: the framework
enforces security policy and the object executes business logic.

When the Security Framework receives a delegated request, it manages security processing as shown in
Figure 1. This processing is very flexible, with fine-grained steps not found in many systems such as
dynamic role mapping, dynamic authorization, and adjudication of multiple authorizers. At each step, it
delegates processing to an included, third party, or custom provider through the corresponding service
provider interface (SPI). This architecture enables BEA WebLogic Server to route all the information
necessary to each kind of service provider so that applications can take full advantage of specialized
security services.

6 BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System

Resource Container
Protected Protected Protected Protected Protected Protected
Resource Resource Resource Resource Resource Resource

Security Framework

Auditing SPI BEE Auditing
‘ ‘ ‘ ‘ ‘ ‘ Provider
Authentication Identity Role Authorization N Adjudication Credential
SPI Assertion SPI Mapping SPI SPI SPI Mapping SPI
Authentication ;de”rtti_ty " Role Authorization Adjudication Clsleder_‘”a'
Provider ssel lon apgmg Provider Provider ap?'”g
Provider Provider Provider

Figure 1. Security Framework Architecture.

Service Provider Integration

The Security Framework simply manages security processing. Each step requires execution by a service
provider. BEA WebLogic Server 8.1 includes providers for every step, but they use the framework SPIs. Any
other provider has access to the same facilities. These SPIs include:

¢ Authentication. This SPI handles the direct verification of requester credentials. The included
provider supports username/password and certificate authentication via HTTPS.

¢ Identity Assertion. This SPI handles requests where an external system vouches for the requester. The
included provider supports X.509 certificates and CORBA IIOP CSIv2 tokens. Because the Security
Framework can dispatch requests to different providers based on the type of assertion, you can support
a new type of external system by simply adding a provider for that system type.

* Role Mapping. This SPI handles the assignment of roles to a user for a given request. The included
provider supports dynamic assignment based on username, group, and time.

¢ Authorization. This SPI handles the decision to grant or deny access to a resource. The provider
included in a future release of BEA WebLogic Server will support many dynamic features such as the
evaluation of request parameter values. The Security Framework supports simultaneous use of multiple
authorizers coordinated by an adjudicator.

* Adjudication. This SPI handles conflicts when using multiple authorization providers. When all the
authentication providers return their decisions, the included provider determines whether to grant the
original request based on either the rule “all must grant” or the rule “none can deny”.

* Credential Mapping. This SPI handles the mapping of application principals to backend system
credentials. As shown in Figure 1, it is not part of the process leading to an access decision because it’s

BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System 7

invoked when an object makes a request rather than when an object receives a request. The included
provider supports username/password credentials and is used internally for J2EE calls and Web SSO.

* Auditing. This SPI handles the logging of security operations. As shown in Figure 1, it is slightly
different from the other SPIs because it is invoked whenever a provider of any kind executes a function.
The include provider supports reporting based on thresholds and writes all reported events to a log file.
The Security Framework supports simultaneous use of multiple auditors, making it easy to integrate
with external logging systems.

These clean SPIs make it possible to plug and unplug different providers as the security ecology evolves,
benefiting everyone involved. BEA can individually upgrade the providers included with BEA WebLogic
Server. Specialist security vendors can easily make their services available to J2EE applications by coding
their products to the appropriate SPIs and many have already done so. Moreover, enterprises can quickly
implement customized security processing where necessary. Instead of having to contort your security
posture to suit the middleware, the middleware adapts its security processing to suit you.

From an administrator’s perspective, selecting from available providers is simply a matter of pointing and
clicking. Using the BEA WebLogic Server console, you expand the Realms node and then expand the
Providers node. As the screen shot in Figure 2 shows, the result is a set of tabbed panes, one for each type
of provider. For a given type of provider, you select one of the available provider instances and then

configure its properties.

Py

- ="
DefaultidentityAsserter % hea'

Connecte 17001

| Gonerat ISEETS
Name: DefaultidentityAsserter
The narme of this WebLogic ldentity Assertion provider
Description: Weblogic Identity Assertion provider

& short description of this WebLogic Identity Assertion provider,
Version: 10
The version number of this WebLagic Identity Assertion provider

& User Name Mapper Class Name: [

The name of the Java class that maps ¥509 digtal cerificates and X801 distinguished names to WebLogic Server user names

£ Trusted Client Principals: ’

The list of trusted client principals to use in CEh2 identity assertion

Available Chosen
‘CSI DistinguishedName AuthenticatedUser

4 @

CSLITTAONymous
CSl Principaliame
C51.X509CerChain

£y Types:

Apply

Figure 2. Administering Security Providers.

8 BEAWhite Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System

Backwards Compatibility

As described above, the new BEA WebLogic Security Framework revolutionizes application layer security.
However, you may have invested a substantial effort in configuring the security realms used in WLW 6.x.
You might not want to upgrade your security model immediately so the framework offers a realm

adapter for backwards compatibility. Essentially, this adapter is the complete security subsystem from
BEA WebLogic Server 6.x and the framework treats it just like any other service provider that implements
the authentication and authorization SPIs. At server startup, the adapter extracts access control
definitions from the deployment descriptor just as before. At runtime, it accepts authentication and
authorization requests delegated from the framework through the corresponding SPI. From your
perspective, BEA WebLogic Server 8.1 security behaves just like 6.x security. From the server’s perspective,
the realm adapter is fully integrated into the 8.1 Security Framework. Once you decide to move to the
Security Framework, you can easily import the security information from 6.x definitions. You can even
perform simultaneous authorization with the realm adapter and the Security Framework’s native provider
to verify proper behavior of the upgrade.

In some cases, you may be using the 6.x realm’s integration with the distributed user management systems
in Unix or Windows.NET. In these cases, you might want to continue using this integration for authentica-
tion but want the benefits of dynamic authorization offered by the Security Framework. Therefore, it has
an option to use the 6.x realm adapter only as an authentication provider. It’s interesting to note how the
flexibility of the framework’s SPI architecture cleanly addresses what might otherwise be a very tricky
backwards compatibility issue.

Security Integration Scenarios

The Security Framework offers a lot of flexibility. To see how this flexibility addresses the application
security challenges discussed above, it helps to pick a few specific examples and show how the framework
helps overcome it. It some cases, the solution may not be completely finished, but the planned design
demonstrates the superiority of an open framework approach.

Perimeter Authentication

In many cases, a party other than BEA WebLogic Server’s own authenticator vouches for the identity of a
requester. It may be the SSL layer of BEA WebLogic Server. It may be a Kerberos system. It may be an
intermediary Web Service. In these cases, the third party provides a token that the application can verify.
As long as it trusts the third party, it can accept a verified token as if it were the original user credential.

The Security Framework employs a very straightforward mechanism for working with such systems. All a
third party has to do is put its token in an HTTP header. The Security Framework examines the token and
dispatches an appropriate service provider based on the token type. If an X.509 certificate from mutual

BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System 9

SSL authentication comes in, the framework dispatches a provider that can verify the certificate chain to a
root certificate authority and perhaps check the current validity of the certificate using the Online
Certificate Status Protocol. If a Kerberos ticket or WS-Security token comes in, the appropriate provider
decodes the token and performs the necessary verification.

Once the provider performs this verification, it maps the identity in the credential to a local user. The
framework calls back to the JAAS with this local user, which then populates the Principal object as
specified in J2EE 1.3. This approach is therefore fully compliant with the appropriate standards yet still
offers tremendous flexibility. A third party provider or enterprise development team can integrate any
authentication technology with BEA WLS as long as they can populate an HTTP header. Integrating BEA
WLS applications with Web SSO solutions is easy because most of them, including SAML, already use
cookies or HTTP headers.

Role Associations

Most application security models employ the concept of roles. Roles provide a layer of indirection between
users and resources that increases the ease of administration. They are like groups, but are more dynamic.
Typically, a security administrator assigns a user to a group upon provisioning and then changes this
assignment only when the user’s job responsibilities change. Roles change more often, perhaps even from
request to request based on specific conditions. The Security Framework supports both Groups and Roles.

The screen shot in Figure 3 shows how easy it is to graphically configure Groups and Roles.

Y
2 hea

myrealm> Group [
Connected to: loc st:7001
B7Configure a new Group

General Dstails |

Possible Groups Current Groups
Administrators

Group Membership:

Figure 3. Administering Groups and Roles.

Administrators can set up roles so that they embody a logical identity such as Teller or name a set of
logical permission such as Deposit, Withdraw, and Transfer. It’s really a matter of design. The first
approach is more focused on the logical role of the user and the second approach is more focused on the
logical role of the resource. The Security Framework distinguishes between globally-scoped roles, which
apply to all resources in an installation, and resource-scoped roles, which apply only to specific resources.
Globally-scoped roles are intended primarily for managing different levels of administrative privileges.
Administrators will mostly configure and manage resource-scoped roles.

10 BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System

Protected Resource

Resource Container

4 N
1 » Context
! RequeSt !

: Get Roles () !
1

Role Mapping
SPI Security Framework

Subject

User
Principal(s)

Principal(s)

Role Mapper

lL relet) 2

Figure 4. Dynamic Role Mapping Process.

The Security Framework enables service providers to dynamically assign roles based on context. Figure 4
represents this process. The included provider can take into account username, group, and time. For
example, suppose a bank had an AccountManagement EJB restricted to users with a Teller role. A user
would fulfill the Teller role if they were a member of the DayTeller group and the local time was between
8am and 6pm. Administrators could also use this time feature to set up role assignments that automati-
cally expire, which might be especially useful for very sensitive information such as human resources data.
Figure 5 is a screen shot that shows how easy it is to set up this dynamic assignment. The role mapping
SPI actually supports the use of additional information such as the parameters of the method call.
Therefore, custom providers could offer even more flexible role mapping Consider the case of a CFO and
expense accounts. A custom provider could grant the CFO an Approver role unless the Employee param-
eter of the request were the CFO himself. That way, he couldn’t approve his own expenses.

BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System 11

Déﬁne Policy » sampleEJBApp > All Instances :

Policy Condition:

User name of the caller
C ember of the group A
nted the role

Policy Statement:

Caller is grantad the rals T
Admin
BB
Chisnge |
(el
Controls wh to the resource(s) should be allowed
Ferios
from (8 x| [00 x| [AM =]

uned 73] [0 <] [Ph =]

Delete | | Reset | [Apphy

Figure 5. Administering Role Mapping.

Credential Mapping

As discussed above, enterprises often want to tie each request of a backend database, packaged applica-
tion, or legacy system to the ultimate user. Therefore, when a J2EE object accesses a backend system on
behalf of a user, it has to supply the appropriate credentials to the system. The basic problem is mapping a
J2EE Principal to backend system credentials. The included service provider solves this problem for the
most common case of username/password credentials. Each BEA WebLogic Server instance has an
embedded LDAP directory in which it can store the encrypted username/password pair for every valid
combination of Principal and backend system.

The increasing attention paid to security may create the need for more sophisticated third party or
custom providers. The latest versions of some databases can use Kerberos tickets. Also, the latest versions
of some packaged applications can use various forms of strong authentication and many mainframes

use RACE The Security Framework can easily accommodate third party or custom providers that support
these alternatives.

Parametric Authorization

One of the classic application security problems is making an authorization decision based on the content
of the request or the target object. Approval thresholds are a common case where you want to evaluate the
value of these parameters. First, you would create a set of roles such as Manager, SeniorManager, and
Director. Then, you would create a set of policies that authorizes approval requests for each role based on
the value of the Amount parameter, such as $5,000 for a Manager, $10,000 for a SeniorManager, and

12 BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System

$20,000 for a Director. Most middleware does not currently address this issue. A forthcoming version of the
included authorization service provider will allow such decisions based on the content of the request.
Figure 6 represents this process. In fact, the authorization SPI already supports the use of method call
parameters in access decisions so you could build a custom provider with these capabilities today.

Protected Resource

¢

Resource Container

’ b Context
I ontex
. Request = Handler

I isAccessAllowed() !
\]

Authorization
[SPI J Security Framework

Subject

User
Principal(s)

Y

Principal(s)
ccess

A..
" Decision

Authorization
Policies
Sz DE e ey

Role(s)

Figure 6. Parametric Authorization Process.

Authorization based on the content of the target is a little trickier. For example, you may want to inspect an
Account object to get the value of AccountHolder before you decide to authorize a withdrawal. Unfortu-
nately, in the general case, this type of visibility can break encapsulation and present a security vulnerabil-
ity. If the security system can access any data in the system, it presents a tempting target for compromise.
It will soon be possible to write custom code to perform this type of operation in select cases. A future
version of the SPI will enable you to access context besides the method call parameters, such as the EJB
primary key. You could then create a very specialized provider that examined the primary key of the
Account object targeted by a Withdrawal request to determine the correct row in an account database. The
provider would then make its own call to this database, using special credentials of course, to retrieve the
account holder and compare it to the Principal. This solution might require some manual mapping of
account holder values to Principal values, but it would work if used judiciously. The dotted line from the
authorizer to the external database in Figure 6 illustrates the possibility of such a solution.

BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System 13

Note that you would have to write almost the exact same code to perform this check in the Account object
itself. However, the service provider approach partitions the security logic and the business logic. Different
people can maintain the two types of logic and changing one does not introduce the risk of potentially
breaking the other. This flexibility is important if you consider the actual complexity of bank accounts
where there are minor accounts, joint accounts, and business accounts. Maintaining the security policies
for such an application could be a full time job in and of itself.

Securing Web Services

Using a combination of the following three techniques, customers can build Web Services that enforce
security at all levels: SOAP message body elements, transport, and control of access.

Message-based security—Data in a SOAP message is digitally signed or encrypted. Message-based
security in BEA WebLogic Web Services uses the WS-Security specification. This specification provides
three mechanisms: security token propagation, message integrity, and message confidentiality. These
mechanisms can be used independently (such as passing a username security token for user
authentication) or together (such as digitally signing and encrypting a SOAP message). Message-based
security provides end-to-end security, ensuring that a message is secure even when using intermediaries,
caches, or queues, in contrast to connection-based security that provides point-to-point security between
two endpoints.

Connection-based security—SSL is used to secure the connection between a client application and the
Web Service. Connection-based security uses protocols such as SSL to protect against eavesdropping and
ensure the integrity of data sent between the Web Services client and server. While it provides a secure
transport for SOAP messages, connection-based security lacks the granularity and flexibility of
WS-Security.

Authorization—Specifies the rules that control access to a Web Service. This kind of security protects
the implementation of the Web Service just like any other component deployed on BEA WebLogic Server.
The security framework handles control of access to the Web Service after the SOAP message is received
and decoded.

14 BEA White Paper — BEA WebLogic Security Framework: Working with Your Security Eco-System

Conclusion

The BEA WebLogic Security Framework does not impose a rigid security model that hinders security
integration with other system elements and forces the costly workaround of mixing security code with
business logic. Instead, it adopts an open processing model so that application components can seamlessly
cooperate with the rest of the enterprise security ecology. Moreover, its processing model delivers a clean
abstraction of policy enforcement from business logic that lowers the cost of administrating security
policies and decreases the chance of security breaches.

Both application developers and security administrators benefit from the BEA WebLogic Security
Framework. Developers no longer have to shoulder the responsibility and potential embarrassment of
mixing application and security code. Administrators do not have to become experts in middleware
paradigms to meet security requirements. When someone has to write special security code, it only has to
be done once—everyone can use and easily maintain it.

The key to the BEA WebLogic Security Framework’s benefits lies in its open service provider model. Third
party security vendors can easily integrate their solutions with BEA WebLogic and enterprises can quickly
create custom security modules. Most importantly, an open model means that enterprises do not have to
wait for the middleware vendor to adopt new security technologies because there are plenty of hooks for
specialists to hang future innovations.

About BEA

BEA is the world’s leading application infrastructure software company, with more than 13,000 customers
around the world including the majority of the Fortune Global 500. The BEA WebLogic Enterprise Platform
provides an industrial strength and easier to use software foundation that makes an enterprise more agile,
productive, and connected, resulting in dramatically increased IT productivity and faster time to value.
BEA’s platform is the de facto standard for more than 1,700 systems integrators, independent software
vendors, and application service providers who partner with BEA to ensure the successful deployment of
customer solutions. BEA can be found on the Web at www.bea.com.

BEA Systems, Inc. CWP0528E0303-1A
2315 North First Street

SanJose, CA 95131 U.S.A.

Telephone: +1.408.570.8000

Facsimile: +1.408.570.8901

www.bea.com

	BEA WebLogic Security Framework: Working with Your Security Eco-ystem
	Copyright
	Contents
	Introduction
	The Integrated Security
	Requirements
	Authentication
	Authorization
	Auditing
	Vision

	Security Framework Architecture
	Overview
	Service Provider Integration
	Backwards Compatibility

	Security Integration Scenarios
	Perimeter Authentication
	Role Associations
	Credential Mapping
	Parametric Authorization
	Securing Web Services

	Conclusion
	About BEA

